Climate-in-a-Box (CIB) Workshop: Introduction and Overview

Gary Wojcik

Northrop Grumman Corporation
Software Integration and Visualization Office (SIVO)

Goddard Space Flight Center

CIB Staff

NASA

- Tsengdar Lee
- Mike Seablom
- Gail McConaughy (retired)
- Tom Clune
- Greg Shirah
- Bill Putman

Northrop Grumman

- Carlos Cruz
- Rob Burns
- Shawn Freeman
- Megan Damon
- Eric Kemp
- Phil Hayes
- Andy Andrews
- Bruce Van Aartsen
- Shujia Zhou
- 。 John Qu
- Gary Wojcik

CIB Staff

- Tetra Tech AMT
 - Rahman Syed
 - Hamid Oloso
 - Raj Pandian
- GST
 - John Evans
 - Ramon Linan
 - Lara Clemence
 - Jarrett Cohen

- Embedded Engineering
 - Larry Adelberg
 - Sal Scotto

Acknowledgements

- NASA's High End Computing Program
- American Recovery and Reinvestment Act (ARRA)
- GSFC's Office of the Chief Technologist-Internal Research and Development program
- NASA's Earth Science Technology Office-Advanced Information Systems Technology program
- GSFC's Codes 610, 581, and 583

Vision

- Climate in a Box (CIB) seeks to:
 - Develop/improve models through a more efficient "open" model development and validation process
 - Open climate/Earth science model development and validation to a wider community

Motivations

- NASA/NOAA climate/earth science models are difficult to use
 - Can be challenging for domain experts
 - Non-typical users (e.g., non-domain scientists) may want to run models

Motivations

- Supercomputing resources are not always readily accessible
 - Wait times in job queues can be extensive
 - Arduous application process for foreign nationals

Goals

- Make NASA/NOAA climate/earth science models more accessible
- Explore desktop supercomputing architectures
- Package models and support software as a "toolkit" for desktop supercomputers
- Explore use of the system for "open" model development/validation

CIB Overview

Model Run

Information

Desktop System (testing, development, lower resolution runs)

Preconfigured Toolkit

Data/Process
Management Tools
(workflow tool)

NASA/NOAA Models

Analysis Tools

User Additions

User-Provided Models/Tools

Traditional Cluster (high resolution runs)

Workflow "Switch" Capability

Intial CIB Toolkit

- Models (ModelE, GEOS5, WRF)
- Analysis tools (GrADS, NCL, Panoply)
- Social networking/collaboration capabilities through NASA's Modeling Guru (modelingguru.nasa.gov)
- Process management tools (e.g., workflow tool/NASA Experiment Designer)

CIB Desktop Architectures

Desktop Architectures

- Cray CX1
 - Developed initial toolkit with 2 Cray CX1's
 - Used Linux and Windows HPC Server
- SGI Octane III
 - Evaluated as a test machine

CX1 Configuration

- 8 "compute nodes"
- Each node has
 - Two Intel 2.6GHz quad-core Nehalem CPUs
 - 24GB DDR2 RAM
 - One 320GB 7200rpm hard drive
- Infiniband and GigE networks connecting the compute nodes

Octane III Configuration

- 8 10 1U compute nodes
 - Two Intel 5520 2.26 GHZ Processors (8 cores total)
 - 150GB SATA 10K RPM Hard drive
 - 24GB RAM
 - GigE and InfiniBand network interfaces
- GigE and InfiniBand integrated switches

CIB Model Porting

Model Porting Status

Linux CX1

- Open-source models
 - WRF, ModelE, GEOS-5 have been run successfully and validated on the CX1
- Models not yet open-source
 - GFS, LIS, GEOS-DAS have been validated on the CX1
 - GDAS being ported to NCCS' Discover

Model Porting Status

- Windows HPC CX1
 - ModelE built serially in Visual Studio
 - Incorporated PGI's port of WRF to Visual Studio 2008 into our Windows environments

Model Ports: Lessons Learned

- Linux ports were straightforward
- Windows HPC ports are more involved as models were written for Linux
 - Build/run scripts written for Linux shells
 - Language features are not always portable
 - Windows HPC best suited for existing Visual Studio developers

Timing and Accuracy Analysis

- On the Linux CX1, WRF, GEOS-5, and ModelE showed no difference in science results compared to runs on NCCS' Discover
- Linux CX1 shows comparable performance to Discover

Timing and Accuracy Analysis

ModelE

GEOS5

WRF

In-depth results are available on Modeling Guru modelingguru.nasa.gov

CIB Workflow Tool

Workflow Tool

- Simplifies/Automates model execution management and other processes
- Provides common look and feel between models and between systems
- Allows for experiment sharing and repeatability

Workflow "Switch" Capability

- Enable model execution to be as seamless as possible between CIB and larger cluster or other CIBs
 - CIB can be used for testing and lower resolution simulations
 - Large HPC systems can be used for validation and simulations at a higher resolution

CIB Workflow Tool Status

- Workflow tool GUI client & server have been tested and validated on the CX1s
- Model workflows for GEOS-5 and WRF are part of the toolkit
- Workflow "Switch Capability" has been implemented

CIB Workshops and Users

CIB Workshops

- CIB Workshop I, March 2010
 - Provided an overview of the CIB project
 - Potential users showed how they might use CIB
 - o Attendees:
 - NASA: GSFC, GISS, HQ, NAS
 - Southeast Climate Consortium
 - University of Michigan
 - AOML
 - Columbia University (CIESIN, CCSR)
 - USGS
 - Great Northern Landscape Conservation Cooperative

CIB Workshops

- CIB Workshop II, September 2010
 - CIB team trained users on the CIB toolkit on a CX1
 - Focused on running models, using the workflow tool and building new workflows
 - Attendees: GSFC, MSFC, USGS, JPL, GISS

CIB User Status

MSFC

- CIB toolkit installed on two CX1s
- Will primarily focus on operational weather simulations with WRF

GISS

 Will be receiving an Octane III and toolkit soon

Summary

- Developed a CIB toolkit that significantly reduces the time needed by new users to begin running NASA and NOAA earth science models
- Added new features to the workflow tool, including the switch capability
- Investigated two desktop architectures for use in CIB
- Held two workshops to introduce users to CIB
- Working to establish a "project release" license for the toolkit

Next Steps

- Improve the User Interface
- Develop automated software synch/ update capability
- Explore virtualization as a way to deliver the toolkits

Videos at NASA Booth

- CIB video
- Workflow tool video
- Snowfake video
- Gtraj video

Thank you!

gary.s.wojcik@nasa.gov